The internet, as we all know, is a complex beast. It depends on a wide variety of technologies to deliver a wide variety of information over a large number of different computing devices. So, how feasible is it to build an internet in the 1632 Universe? Less difficult than you might think, depending on what you're after. To make those decisions, we need to look at what resources are available on several fronts. Before going too far into this, you might also want to review "So You Want To Do Telecommunications In 1633?" in Grantville Gazette, Volume 2.

Resources

Computers

In 2003, a number of folks worked to put together a computer resource survey for Grantville, to provide some definition of what kind of computational resources might be available to the residents of Grantville who had been cast into the past. That survey can be found here:

http://homepage.mac.com/msb/163x/faqs/computers.html

Several assumptions (at least one of which proved to be too conservative) were made governing how many and what types of computers might be available. A few starting points can, however, be noted. First, don't expect to see anything introduced after February of 2000. That allows a couple of months for just-released technology to reach Grantville (which, you should note, is not necessarily going to have the latest and greatest hardware, either—historically West Virginia lags behind the rest of the country in tech adoption). Second, expect to see a lot of hand-me-down computers—older models, such as 386s, 486s, Pentium Is—that kind of thing. The one assumption that was, in fact, too conservative was that the Mannington schools had made a concerted effort, in the late 90s, to provide up-to-date computing hardware for the teachers to use with their students. As a result, there were more then-modern computers than expected—mostly Celerons and Pentium IIs, with a mix of Pentium IIIs.

Also worth noting is that there were more, older "scrap" computers than expected. Hold onto that thought, because we'll be getting back to it.

Routers

One of the big issues in building a network is routing capacity. In that sense, Grantville was sorely lacking. A grand total of 2 T-1s (with associated CSU/DSU hardware) have been identified within the radius of the ROF. By authorial fiat, a total of 4 early-model 802.11b wireless routers are also present—and no, these don't have the firmware that allows them to be used as long-distance bridges.

But, if you think back a few years to the early days of the Internet, you'll find that "routers" were not much more powerful than then-extant computers. Which means, if you think about it, that you're talking about something with the horsepower of a 386 or a 486. Hold that thought as well, because we'll be getting back to this issue.

Backbone

This is where you wind up with a real problem. Because, except for the in-town cable, and the 7 miles of fiber optic running under the CSX rail line, there just isn't anything useful—you'll have to make it all, using existing resources. Except, you don't. The groundwork has already been laid for you, if you know where to look. A few data points to consider:

- A few years ago, just to prove that they could, a datacomm company who shall remain nameless decided to demonstrate the robustness of their product by running an Ethernet networking connection over 8 strands of barbed wire. Just to finish proving the point, someone later ran an Ethernet link over a one mile section of barbed wire.

- At about the same time, a group in Norway actually implemented what had been henceforth a joke: IP over carrier pigeon. Using a printer, a scanner, and a carrier pigeon, they successfully established a network link between two computers, including a network segment delivered solely by carrier pigeon. The latency was, as you might expect, atrocious. Nonetheless, they were able to pass network data across the link.

- Ham radio operators routinely operate IP networks over high-frequency radio networks, worldwide.

- Most modern telephone service is delivered over a two-wire pair—what's known in the industry as unshielded twisted pair (UTP). If you look at a modern phone wire, however, you will find that it normally has two pairs of wires. What's interesting about this is that 1990s-era 10Megabit Ethernet (10BaseT, in industry parlance), will run quite nicely using two pairs of wire.

We're really sorry, but this is only available to up-to-date paid subscribers.

Our columns and editorials are free, along with a few other items, but almost all stories and all downloads are paid only.

If you want to read the entire gazette, you need to either subscribe here, or purchase a download of any single issue at the Baen Books e-book store  or at Amazon.com.

- The Grantville Gazette Staff