The most dangerous mammal in North America kills over one hundred thirty people each year, and seriously injures another twenty nine thousand. The most recycled material in North America was dumped in landfills until the late 1970s, but now, nearly 100 percent of that material contains recycled content.

The animal? The white tailed deer. The material? Highway asphalt. Things that are very important are often common and overlooked.

Prior to the 1970s the question "What's the most recycled material?" had a very different, but just as surprising answer: Iron. Nearly 100% of all automotive iron, nearly 100% of iron from construction debris, and over 80% of iron from consumer appliances is recycled. Iron doesn't have a memory. The girders and beams from the World Trade center were sold to iron foundries, and will appear as buildings, and refrigerators, and washing machines around the world. Over half of the iron used in the world comes from recycling.

In coming issues of the Grantville Gazette articles will discuss various problems facing the Granvillers, including the "Stainless Steel problem," the replacement of the power plant, constructing boats and bridges and barges, making the steam engines to power those, reproducing the machine shops and building new machine tools, the chemicals industry, coke, medicines, surgery, anesthesia, clocks, navigation and mapping. All of these face a common element in what the 1632 series authors and background researchers have come to call the "Tools to make tools" problem: iron.

In the early 1630s, just before the appearance of the Ring of Fire, the annual production of iron in the part of Europe that interests us was about fifteen thousand tons. One hundred miles of main line railroad needs over twenty thousand tons of iron. The telegraph line from Grantville to Magdeburg needs almost fifteen thousand tons of iron. Small main line railroad steam engines need three to five tons of iron each, and "real" railroad engines run seventy-five tons. Barges, even small barges like the classic UK narrowboat, run six to ten tons of iron per barge. A fifty by twelve foot barge runs around thirty tons. Future articles in the Gazette will detail the rapid increase of iron and steel production in the USE. The projections resulting from the projects named in the books published by early 2004 indicate that within two years of the Ring of Fire, European iron production will have to have increased by a factor of two to three, with a planned increase by a factor of ten by year five.

This leads to the question, what is so important about iron? There are other materials: wood, copper, aluminum, plastics, and alloys like brass and bronze are all common. Why make such a big deal about iron? This article will attempt to place civilization's use of iron in context historically, and physically.

* * *

Iron is the fourth most abundant element in the earth's crust. The most abundant is oxygen, which isn't much good for building things. Next is silicon, which we use for computer chips, but not for bridges or boats. Third is aluminum. We do build stuff from aluminum, but winning aluminum metal from the earth's crust turns out to be a very difficult prospect that requires the use of massive amounts of electricity. Most aluminum in the crust is bound up chemically in ways that make it very difficult to separate, even with twenty-first century technology. Iron, on the other hand, comprises about five percent of the earth's crust, and can be separated from its ore with little more than fire and charcoal. Other metals used by civilization are very rare. Copper exists in the crust at sixty-eight parts per million. Lead is even more rare at ten parts per million. One driving force then that makes iron an important part of civilization is that it is common, and easy to produce.

Iron has some very neat properties. It is very strong. Pound for pound, iron is the strongest material available before the twentieth century. It is very workable. Iron can be cast and beaten and rolled and formed into almost any shape. Because it is strong, thin sheets of iron can substitute for thick heavy layers of other substances. Iron can be flexible, and makes great swords and springs. Iron can be stiff and makes great cutting blades and hammers and tools. Iron melts at a very high temperature. Iron's melting point is more than twice the temperature of a normal open fire. Iron doesn't even soften in normal open fires, so it can be used to contain fire and form stoves and pipes and such. Even when heated red hot iron can retain much of its strength. No other single metal does all these things. Copper is ductile, it can be formed into all sorts of shapes, but it is soft. Bronze can be hard, but it is weak, and melts at a low temperature. Lead, gold, and silver are soft, and the latter two are so rare that we make money out of them. Iron is unique and has been the basis of civilization in Europe, Asia and Africa for over three thousand years.

* * *

How do you produce iron then? First, select a rock with lots of iron in it. The iron will be bound up with oxygen. The best iron ores are little more than iron and oxygen. They are rust rocks. Most iron ore isn't of this quality, and contains varying amounts of silicon, sulfur, manganese and phosphorus. Oxygen combines with carbon more strongly than it binds with iron. If you powder iron ore and charcoal or coke, and heat the mixed powders, the iron gives up a bit of its oxygen. The oxygen binds with the carbon to make carbon dioxide. In the simplest smelting process, crushed iron ore, crushed charcoal, and a little limestone or sea shells are heated together until they are red hot. As this spongy mass, called a bloom, cools, pure pieces of iron are intermingled with leftover charcoal and the other chemicals left behind. The parts that aren't iron are called slag. The bloom would be hammered and turned and hammered and turned, and the slag would be squeezed out, and the bits of iron would come together to form wrought iron. Wrought means hammered or worked. In the seventeenth century, there were hundreds of hammer mills scattered throughout Europe wherever a seam of iron ore coexisted with a stream capable of turning a wheel and powering a hammer. All the iron available in Europe in the seventeenth century started life as wrought iron. Wrought iron has a carbon content of around 0.02 to 0.08 percent by weight. This is important because the factor that is the most important in describing the strength and brittleness of iron is the carbon percentage. A very small difference in carbon results in a huge difference in the properties of the iron. Consider the next type of iron to be smelted.

We're very sorry, but this content is only available to current subscribers.

Perhaps you just need to log in.  If you're already logged in, please check if your subscription has expired by looking here.

If you're not already a subscriber you need to know that our columns and editorials are free, along with a few other items, but almost all stories and all downloads are paid only.

If you want to read the entire gazette, you need to either subscribe here, or purchase a download of any single issue at the Baen Books e-book store  or at

- The Grantville Gazette Staff